Máté Lengyel
Cambridge University
Adaptation to Natural Input Statistics: a Key to Dendritic Computation and Plasticity
12:00 pm, Tuesday 24 November 2015
Location: Oxford Martin School, Old Indian Institute, 34 Broad Street, Oxford
Abstract: It is unknown how dendritic nonlinearities and plasticity mechanisms contribute to computations at the level of neural circuits. We developed a theory that formalises how dendritic nonlinearities that are optimal for integrating synaptic inputs depend on the statistics of presynaptic activity patterns. Our theory accurately predicts the responses of two types of cortical pyramidal cell to patterned two-photon glutamate uncaging. We also derived optimal rules for structural and intrinsic plasticity which ensure that neurons stay tuned to the statistics of their inputs. The optimal structural plasticity rule efficiently identifies ensembles by clustering synapses along the dendritic tree. The same principle suggests an intrinsic plasticity rule for fine-tuning the nonlinear properties of dendritic branches to the dynamics of their presynaptic ensembles, reproducing experimentally observed forms of branch-strength potentiation. These results reveal a new computational principle underlying dendritic integration and plasticity by suggesting a tight functional link between cellular and systems-level properties of cortical circuits.
Biography: Máté Lengyel received his PhD in Neuroscience at Eötvös University in Budapest in 2004 and was a postdoctoral fellow at the Gatsby Computational Neuroscience Unit at UCL and a visiting research fellow at the Collegium Budapest Institute for Advanced Study. He is currently a Reader in Computational Neuroscience at the University of Cambridge and the recipient of an Investigator Award from the Wellcome Trust.
For further information please contact Fiona Woods at fiona.woods@cncb.ox.ac.uk