Johannes Seelig

Janelia Farm

Neural Circuits and Representations Underlying Visuomotor Integration in Drosophila

Thursday 13 February 2014

Location: Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford

Abstract: The fruit fly Drosophila melanogaster performs a range of interesting behaviors, solving the task of transforming sensory information into motor output (sensorimotor integration) with a nervous system that is numerically simpler than those of most vertebrates. In addition to the increased tractability this provides for mechanistic understanding, Drosophila has many other experimental advantages, including the ability to genetically target specific sub-populations of neurons (enabling, for example, cell-type-specific activity sensing and manipulation). This makes the fruit fly an attractive model system for identifying general computational algorithms that might be conserved across species, and to understand how they are implemented in neural circuits.

To understand how the brain enables sensorimotor integration, it is important to study the dynamics of neural circuits in the context of the behaviors that they are involved in. To this end, I have developed an experimental setup for two-photon calcium imaging while the fly performs visually guided tethered walking and flight behavior. This setup allows us to record the activity of selected, genetically identified populations of neurons while the fly performs a task.

I have used this setup to investigate the function of neural circuits in the fly’s visual system and in its central brain. I particularly focused on neural representations and dynamics in a region in the central brain of the fly that is required for innate attraction to particular visual features, for visual short- and long-term memory (including spatial memory or place learning) as well as motor coordination, and I will discuss the results of these experiments in my talk.